Associations, Biological Correlates, and Clinical Translation

Timothy R. Rebbeck, Ph.D.
University of Pennsylvania
School of Medicine

Evolution of Research

Goals

- Predict Risk:
 - Establish value-added information of genomic data (possibly in the absence of mechanism)
 - Example: BRCA1 and breast cancer
- Understand Context:
 - Associations in relevant (biological) setting
 - Move from "Which model?" to "How many models?"
- Define Biological Correlates:
 - Provide biological insights
 - Explain/validate associations
 - Motivate risk prediction and prevention strategies

Using "Context" to Interpret Association Results

- SNP vs. Haplotype
- Population Structure
- Environmental Context

COMT Haplotypes, mRNA Secondary Structure and Enzymatic Activity

"Haplotypes divergent in synonymous changes exhibited the largest difference in COMT enzymatic activity"

"Flip-Flop" Phenomenon

A+B are risk alleles

A is a risk allele, B is protective

NAT2 and Bladder Cancer: Exposure Context

- NAT2 genotype associations have been inconsistent: opposite overall vs. in Benzidine exposed
- Exposure affects activation/metabolism by NAT2, and therefore risk:
 - Aryl-monoamines + NAT2 → Increased Risk
 - Aryl-diamines + NAT2 → Decreased Risk

Goals

- Predict Risk:
 - Establish value-added information of genomic data (possibly in the absence of mechanism)
 - Example: BRCA1 and breast cancer
- Understand Context:
 - Associations in relevant (biological) setting
 - Move from "Which model?" to "How many models?"
- Define Biological Correlates:
 - Provide biological insights
 - Explain/validate associations
 - Motivate risk prediction and prevention strategies

Sources of "Functional" Information

Evidence	Examples
Experimental	In vivo, In vitro assays
Nucleotide Sequence	Mutation Consequences
Evolutionary Conservation	Sequence Conservation (e.g., SIFT, CODDLE)
Population Genetics	Hardy-Weinberg, Linkage Disequilibrium
Exposures	Metabolism of relevant carcinogens
Epidemiology	Association consistency
Structural	Protein conformation (e.g., PolyPhen)

Computational Classifications of 54 Uncharacterized BRCA1 Variants

N=Naïve Bayes R=Random Forest S=Support Vector Machine β-sheet
 bend
 α-helix
 H-bonded turn

buried deleterious exposed neutral

Karchin et al. *PLoS Comput Biol*, 2006

Pathogenicity of BRCA1 **Mutations** Based on Pathology, Family History, Cosegregation, Co-occurrence with Disease

Goldgar et al. *AJHG*, 2004

Odds of Pathogenicity: Six SNPs in BRCA1 and BRCA2

Table 2
Odds in Favor of Each Variant Being Deleterious for the Six Variants Discussed in the Text, for Each Source of Information and Overall

	Odds in Favor of Causality for						
		BRCA1		BRCA2			
Data Source	C1787S	R1699Q	R841W	Y42C	P655R	D2723H	
Co-occurrence	1.2	1.4	.028	8.9×10^{-11}	.007	2.0	
Cosegregation	1,694	2.84	4×10^{-9}	6.7×10^{-7}	.48	13,731	
GMS	1.5	.48	1.31	3.49	1.35	.98	
Conservation	10.4	10.4	.006	.194ª	.004ª	5.0	
Overall odds	31,692	20	8.7×10^{-13}	4×10^{-17}	.00002	134,563	

^a Deleted residue counted as a substitution.

Transactivational Activity of BRCA1 Variants

Problem: "Function" and Low Penetrance Genes Rebbeck et al. Nat Rev Genet 2004

*Upon Xenobiotic Exposure

Goals

- Predict Risk:
 - Establish value-added information of genomic data (possibly in the absence of mechanism)
 - Example: BRCA1 and breast cancer
- Understand Context:
 - Associations in relevant (biological) setting
 - Move from "Which model?" to "How many models?"
- Define Biological Correlates:
 - Provide biological insights
 - Explain/validate associations
 - Motivate risk prediction and prevention strategies

Defining Context & Biological Correlates for Low Penetrance Human Genes: Level Crossing Model

Breast Cancer Example: Level Crossing Model

Estrogen Metabolism Genotypes and Postmenopausal Hormone Levels

Genotype	COMT	CYP1A1	CYP1A2	CYP1B1	CYP17	CYP19	ESR1	HSD3B
A-dione				0	00	0		0
DHEA				0	0	00		0
E1	0			0	00	++		0
E2 Total	0+	0	0	00	00	++		0
E2 Follicular				0		0		
E2 Luteal				+		0		
E2 Free	0	+		0	0	++		
2-OH E1	0	0	0	0	0			
16α-OH E1	+	+	+	0	0			
FSH	0	0						
PG Total	00	00		00	0	0		
PG Follicular				0		0		
PG Luteal				0		0		
SHBG	0	0	+	00	0	0+		+
Testosterone	00	00		00	0	00		0

OO=VALIDATED NULL, O=NULL, 0+=MIXED, +=ASSOC., ++=VALIDATED ASSOC.

Estrogen Metabolism Genotypes and Menopausal Symptoms Longitudinal Cohort of 404 Women

Gene	Depression	Hot Flashes
COMT	1 18 (0.77-1.80)	0.95 (0.60-1.55)
CYP1A2	0.84 (0.52-1.34)	1.06 (0.63-1.79)
CYP1B1*3	0.64 (0.44-0.94)*	0.70 (0.48-1.04)
CYP1B1*4	0.80 (0.53-1.20)	1.00 (0.63-1.59)
CYP3A4	1.14 (0.72-1.81)	0.98 (0.60-1.63)
CYP19	1.10 (0.71-1.72)	1.41 (0.88-2.25)
SULT1A1*2	1.07 (0.76-1.50)	0.89 (0.60-1.31)
SULT1A1*3	1.15 (0.72-1.85)	0.91 (0.53-1.55)
SULT1E1 5'UTR	0.85 (0.55-1.32)	1.50 (0.96-2.34)
SULT1E1 3'UTR	0.90 (0.61-1.32)	0.99 (0.65-1.53)

^{*}P<0.005 for interaction with menopausal status

Hormone Metabolism Genotypes: Joint Effects

878 breast cancer cases and 1,409 age-matched controls

Table 3. Adjusted ORs, 95% CIs, and P values for pairwise genotype interactions and breast cancer case-control status

Gene	COMT	CYP1A1*2C	CYP1A2*1F	CYP1B1*3
COMT		14.27 (0.99-204.95) [0.051]	1.45 (0.27-7.78) [0.665]	2.05 (0.58-7.24) [0.263]
CYP1A1*2C	0.82 (0.28-2.36) [0.706]	8.5	1.65 (0.14-19.49) [0.692]	1.74 (0.39-4.83) [0.470]
CYP1A2*1F	1.37 (0.39-7.74) [0.628]	2.79 (0.45-17.5) [0.272]	\$ 6.5	1.49 (0.53-4.14) [0.449]
CYP1B1*3	0.95 (0.46-1.94) [0.880]	2.05 (0.63-6.66) [0.235]	0.68 (0.24-1.94) [0.477]	S
CYP1B1*4	0.59 (0.31-1.12) [0.104]	0.96 (0.35-2.67) [0.940]	0.57 (0.21-1.54) [0.267]	*
CYP3A4	0.79 (0.25-2.45) [0.680]	3.73 (0.37-37.34) [0.262]	1.06 (0.24-4.77) [0.931]	0.78 (0.31-1.94) [0.590]
SULT1A1*2	1.91 (0.97-3.74) [0.061]	0.15 (0.05-0.42) [0.0004]	0.50 (0.18-1.34) [0.167]	0.87 (0.45-1.68) [0.673]
SULT1A1*3	0.35 (0.03-8.72) [0.387]	, , , , ,	3 7 2 5 2	2.81 (0.29-27.49) [0.374]
SULT1E1	1.20 (0.48-2.96) [0.695]	1.81 (0.41-8.08) [0.440]	6.95 (1.72-28.00) [0.0064]	0.87 (0.40-1.87) [0.715]

Progestin Metabolism Genotypes and Combined Estrogen/Progestin HRT

677 breast cancer cases and 905 age-matched controls

	CYP3A4			PGR		
Phenotype	Never CHRT	<3 years CHRT	≥3 years CHRT	Never CHRT	<3 years CHRT	≥3 years CHRT
Ductal	1.8 (0.8-3.8)	0.41 (0.1-1.6)	1.5 (0.6-3.6)	0.59 (0.3-1.2)	1.12 (0.3-5.0)	3.35 (1.1-10.0)
Lobular	2.5 (0.6-9.9)	NE	0.4 (0.1-4.1)	1.83 (0.7-5.0)	NE	1.08 (0.1-10.2)
PR+	2.4 (1.1-5.3)	0.65 (0.2-2.7)	0.7 (0.2-2.2)	0.59 (0.3-1.3)	1.52 (0.3-8.9)	3.82 (1.3- 11.6)
PR -	3.1 (1.1-8.7)	NE	0.7 (0.2-3.6)	1.58 (0.7-3.7)	NE	0.84 (0.1-7.7)
ER+	1.9 (0.9-4.3)	0.48 (0.1-1.9)	0.6 (0.2-1.8)	0.88 (0.4-1.7)	1.07 (0.2-6.1)	3.47 (1.2-10.2)
ER -	6.5 (2.0-20.7)	NE	1.2 (0.2-6.3)	1.09 (0.3-3.6)	NE	NE

NE: Not estimable

Questions

- How much and what kind of contextual and biological evidence do we need to make translational/clinical inferences about gene/variant pathogenicity?
- How to determine and disseminate the decision about functionality? Who will make the decisions?
- Will more complex models of functionality that include other data (e.g., disease characteristics, risk factors) improve understanding of pathogenicity?

Working Protocol

- Compute Sequence/Structure/Family analysis models
- Evaluate context of association:
 - Genome structure
 - Effect modification, joint effects
- Assess biological effects of genotype:
 - Phenotypic correlations
 - Expression and other genomic signatures
 - In vivo or in vitro function
 - DNA-protein and protein-protein interactions
- Reconcile computational, functional, and contextual data: "Venice Criteria" for functional data?
- Develop prediction models/tools
- Translate for risk assessment